Topology Control with Limited Geometric Information

نویسندگان

  • Kevin M. Lillis
  • Sriram V. Pemmaraju
چکیده

Topology control is the problem of selecting neighbors for each node in a wireless network, so that the resulting network has a number of useful properties. More precisely, a topology control protocol P takes as input a network G and aims to construct a spanning subgraph GP , that is sparse, “energy minimizing” and has sufficient connectivity so as to guarantee multiple short paths between pairs of nodes in G. Currently, topology control protocols assume that nodes in G reside in some Euclidean (usually, 2-dimensional) space and rely on geometric information such as node locations and pairwise distances between nodes to produce GP with appropriate properties. However, these protocols are extremely sensitive to errors in location information and this feature makes them impractical because errors in location and distance information are pervasive in practical systems. This paper presents and analyzes two randomized topology control protocols that are tolerant to errors in pairwise distance estimates. The first protocol, called RTC (short for randomized topology control) uses no geometric information, relying only on connectivity information and is therefore completely immune to errors in location or distance information. The second protocol, called ε-RTC, generalizes the first protocol. Allowing for errors in distance estimates, but assuming that relative errors are bounded above by ε, the second protocol produces an output network that is symmetric, connected, sparse, and has good spanner properties. As ε → 0, ε-RTC behaves like the XTC protocol (R. Wattenhofer and A. Zollinger, “XTC: A practical topology control algorithm for ad-hoc networks”, WMAN 2004) and for large values of ε, it behaves like RTC. Our results hold whenever the input network is a unit disk graph or even a quasi unit disk graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A topology control algorithm for autonomous underwater robots in three-dimensional space using PSO

Recently, data collection from seabed by means of underwater wireless sensor networks (UWSN) has attracted considerable attention. Autonomous underwater vehicles (AUVs) are increasingly used as UWSNs in underwater missions. Events and environmental parameters in underwater regions have a stochastic nature. The target area must be covered by sensors to observe and report events. A ‘topology cont...

متن کامل

Topology Control in Wireless Sensor Network using Fuzzy Logic

Network sensors consist of sensor nodes in which every node covers a limited area. The most common use ofthese networks is in unreachable fields.Sink is a node that collects data from other nodes.One of the main challenges in these networks is the limitation of nodes battery (power supply). Therefore, the use oftopology control is required to decrease power consumption and increase network acce...

متن کامل

Augmenting topology-based maps with geometric information

Topology-based maps are a new representation of the workspace of a mobile robot, which capture the structure of the free space in the environment in terms of the basic topological notions of connectivity and adjacency. A topology-based map can represent the environment in terms of open spaces (rooms and corridors) connected by narrow passages (doors and junctions). In this paper, we show how to...

متن کامل

Octree Grid Topology Preserving Geometric Deformable Model for Three-Dimensional Medical Image Segmentation

Topology-preserving geometric deformable models (TGDMs) are used to segment objects that have a known topology. Their accuracy is inherently limited, however, by the resolution of the underlying computational grid. Although this can be overcome by using fine-resolution grids, both the computational cost and the size of the resulting surface increase dramatically. In order to maintain computatio...

متن کامل

Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems

Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005